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Abstract

Intuitively, the Feature Selection problem is to choose a subset of a given a set of features
that best represents the whole in a particular aspect, preserving the original semantics of the
variables on the given samples and classes. In practice, the objective of finding such a subset
is often to reveal a particular characteristic present in the given samples.

In 2004, a new feature selection approach was proposed. It was based on a combinatorial
optimization problem called («, 3)-k-Feature Set Problem. The main advantage of using this
approach over ranking methods is that the features are evaluated as groups, instead of only
considering their individual performance.

The main drawback of this approach is the complexity of the combinatorial problems
involved. Since some of them are NP-Complete, it is unlikely that there would exist an efficient
method to solve them to optimality efficiently. To the best of the author’s knowledge at the
moment of this research, the available tools to deal with the («,3)-k-Feature Set Problem
approach can not solve problems of the magnitude required by many practical applications.

Given the big advantage brought by the multivariate characteristic of this method, its
successful wide applicability and knowing that its only real known drawback is scalability,
further research to overcome such a difficulty is appropriate. Even though the optimal solution
of the problem is always desirable, it often is not strictly necessary in the case of many
biological applications. Therefore, this work aims to propose fast heuristics to address the
(a, B)-k-Feature Set Problem approach, and propose procedures to obtain dual bounds that

do not rely on external optimization packages.
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